Benchmark Study of Epoxy Coatings with Selection of Bio-Based Phenalkamine versus Fossil-Based Amine Crosslinkers

Author:

Samyn Pieter1ORCID,Bosmans Joey1,Cosemans Patrick1

Affiliation:

1. SIRRIS, Department of Innovations in Circular Economy and Renewable Materials, 3001 Leuven, Belgium

Abstract

The phenalkamines (PK) derived from cardanol oil can be used as a bio-based crosslinker for epoxy coatings as an alternative for traditional fossil amines (FA). First, the reaction kinetics of an epoxy resin with four PK and FA crosslinkers are compared by differential scanning calorimetry, illustrating a fast reaction rate and higher conversion of PK at room temperature in parallel with a moderate exothermal reaction. Second, the performance of coatings with various concentrations of PK and PK/FA ratios indicates good mixing compatibility between crosslinkers resulting in higher hardness, scratch resistance, hydrophobicity, and abrasive wear resistance of coatings with PK. The superior performance is confirmed over a broad range of resin/crosslinker ratios, facilitating the processing with viscosity profiles depending on the PK type. Although fossil- and bio-based crosslinkers have different chemical structures, the unique linear relationships between intrinsic mechanical properties (i.e., ductility and impact resistance) and coating performance indicate that the degree of crosslinking is a primary parameter controlling coating performance, where PK simultaneously provides high hardness and ductility. In conclusion, the optimization of the processing range for bio-based PK as a crosslinker for epoxy coatings delivers suitable processing conditions and superior mechanical performance compared to traditional amine crosslinkers.

Funder

Flanders Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3