MgO Modified by X2, HX, or Alkyl Halide (X = Cl, Br, or I) Catalytic Systems and Their Activity in Chemoselective Transfer Hydrogenation of Acrolein into Allyl Alcohol

Author:

Gliński Marek1ORCID,Ulkowska Urszula1ORCID,Kaszkur Zbigniew2ORCID,Łomot Dariusz2,Winiarek Piotr1ORCID

Affiliation:

1. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

2. Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

Abstract

A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using a number of methods: determination of the concentration of X− ions, surface area determination, powder X-ray diffraction (PXRD), surface acid–base strength measurements, TPD of probe molecules (acetonitrile, pivalonitrile, triethylamine, and n-butylamine), TPD-MS of reaction products of methyl iodide with MgO, and Fourier transform infrared spectroscopy (FTIR). The catalysts’ activity and chemoselectivity during transfer hydrogenation from ethanol to acrolein to allyl alcohol was measured. A significant increase in the activity of modified MgO (up to 80% conversion) in the transfer hydrogenation of acrolein was found, while maintaining high chemoselectivity (>90%) to allyl alcohol. As a general conclusion, it was shown that the modification of MgO results in the suppression of strong basic sites of the oxide, with a simultaneous appearance of Brønsted acidic sites on its surface. Independently, extensive research on the reaction progress of thirty alkyl halides with MgO was also performed in order to determine its ability to neutralize chlorinated wastes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3