Computer Modeling of Alzheimer’s Disease—Simulations of Synaptic Plasticity and Memory in the CA3-CA1 Hippocampal Formation Microcircuit

Author:

Świetlik DariuszORCID,Białowąs Jacek,Moryś Janusz,Klejbor Ilona,Kusiak Aida

Abstract

This paper aims to present computer modeling of synaptic plasticity and memory in the CA3-CA1 hippocampal formation microcircuit. The computer simulations showed a comparison of a pathological model in which Alzheimer’s disease (AD) was simulated by synaptic degradation in the hippocampus and control model (healthy) of CA3-CA1 networks with modification of weights for the memory. There were statistically higher spike values of both CA1 and CA3 pyramidal cells in the control model than in the pathological model (p = 0.0042 for CA1 and p = 0.0033 for CA3). A similar outcome was achieved for frequency (p = 0.0002 for CA1 and p = 0.0001 for CA3). The entropy of pyramidal cells of the healthy CA3 network seemed to be significantly higher than that of AD (p = 0.0304). We need to study a lot of physiological parameters and their combinations of the CA3-CA1 hippocampal formation microcircuit to understand AD. High statistically correlations were obtained between memory, spikes and synaptic deletion in both CA1 and CA3 cells.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference60 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3