Sesquiterpene Lactones with Dual Inhibitory Activity against the Trypanosoma brucei Pteridine Reductase 1 and Dihydrofolate Reductase

Author:

Possart Katharina,Herrmann Fabian C.,Jose JoachimORCID,Costi Maria P.ORCID,Schmidt Thomas J.ORCID

Abstract

The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease “Nagana” which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference47 articles.

1. Neglected Tropical Diseases-Globalhttps://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1

2. Neglected Tropical Diseaseshttps://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_2

3. Neglected Tropical Diseases: Epidemiology and Global Burden

4. Trypanosomiasis, Human African (Sleeping Sickness)https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)

5. Fexinidazole: First Global Approval

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3