A Novel Method for the Background Signal Correction in SP-ICP-MS Analysis of the Sizes of Titanium Dioxide Nanoparticles in Cosmetic Samples

Author:

Temerdashev Zaual A.ORCID,Galitskaya Olga A.ORCID,Bolshov Mikhail A.ORCID

Abstract

We discuss the features involved in determining the titanium dioxide nanoparticle (TiO2NP) sizes in cosmetic samples via single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) in the millisecond-time resolution mode, and methods for considering the background signal. In the SP-ICP-MS determination of TiO2NPs in cosmetics, the background signal was recorded in each dwell time interval due to the signal of the Ti dissolved form in deionized water, and the background signal of the cosmetic matrix was compensated by dilution. A correction procedure for the frequency and intensity of the background signal is proposed, which differs from the known procedures due to its correction by the standard deviation above the background signal. Background signals were removed from the sample signal distribution using the deionized water signal distribution. Data processing was carried out using Microsoft Office Excel and SPCal software. The distributions of NP signals in cosmetic product samples were studied in the dwell time range of 4–20 ms. The limit of detection of the NP size (LODsize) with the proposed background signal correction procedure was 71 nm. For the studied samples, the LODsize did not depend on the threshold of the background signal and was determined by the sensitivity of the mass spectrometer.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3