The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils

Author:

Ukalska-Jaruga AleksandraORCID,Smreczak Bożena

Abstract

Polycyclic aromatic hydrocarbons (PAHs) exhibit persistence in soils, and most of them are potentially mutagenic/carcinogenic and teratogenic for human beings but also influence the growth and development of soil organisms. The PAHs emitted into the atmosphere are ultimately deposited (by dry or wet deposition processes) onto the soil surface where they tend to accumulate. Soil organic matter (SOM) plays an important role in the fate and transformation processes of PAHs, affecting their mobility, availability, and persistence. Therefore, the aim of this research was to investigate the influence of SOM fractional diversification (fulvic acids—FA, humic acids—HA, and humins—HN) on PAH availability and persistence in soils. Twenty soil samples (n = 20) were collected from upper horizons (0–30 cm) of agricultural soils exposed to anthropogenic emissions from industrial and domestic sources. The assessment of PAH concentrations included the determination of medium-molecular-weight compounds from the US EPA list: fluoranthene—FLA, pyrene—PYR, benz(a)anthracene—BaA, and chrysene—CHR. The assessment was conducted using the GC-MS/MS technique. Three operationally defined fractions were investigated: total extractable PAHs (TE-PAHs) fraction, available/bioavailable PAHs (PB-PAHs) fraction, and nonavailable/residual PAHs (RE-PAHs) fraction, which was calculated as the difference between total and available PAHs. TE-PAHs were analyzed by dichloromethane extraction, while PB-PAHs were analyzed with a hydrophobic β-cyclodextrin solution. SOM was characterized by total organic carbon content (Turin method) and organic carbon of humic substances including FA, HA, HN (IHSS method). Concentrations of PAHs differed between soils from 193.5 to 3169.5 µg kg−1, 4.3 to 226.4 µg kg−1, and 148.6 to 3164.7 µg kg−1 for ∑4 TE-PAHs, ∑4 PB-PAHs, and ∑4 RE-PAHs, respectively. The ∑4 PB-PAHs fraction did not exceed 30% of ∑4 TE-PAHs. FLA was the most strongly bound in soil (highest content of RE-FLA), whereas PYR was the most available (highest content of PB-PYR). The soils were characterized by diversified total organic carbon (TOC) concentration (8.0–130.0 g kg−1) and individual SOM fractions (FA = 0.4–7.5 g kg−1, HA = 0.6–13.0 g kg−1, HN = 0.9–122.9 g kg−1). FA and HA as the labile fraction of SOM with short turnover time strongly positively influenced the potential ∑4 PAH availability (r = 0.56 and r = 0.52 for FA and HA, respectively). HN, which constitutes a stable fraction of organic matter with high hydrophobicity and poor degradability, was strongly correlated with ∑4 RE-PAHs (r = 0.75), affecting their persistence in soil.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3