Author:
Shao ,Yuan ,Zhu ,Xu ,Li ,He ,Li ,Wang ,Chen
Abstract
New, improved therapies to reduce blood glucose are required for treating diabetes mellitus (DM). Here, we investigated the use of a new nanomaterial candidate for DM treatment, carbon nanoparticles (CNPs). CNPs were prepared by carbonization using a polysaccharide from Arctium lappa L. root as the carbon source. The chemical structure and morphology of the CNPs were characterized using Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis, and transmission electron microscopy. CNPs were spherical, 10-20 nm in size, consisting of C, H, O, and N, and featuring various functional groups, including C=O, C=C, C–O, and C–N. In vitro, the as-prepared CNPs could inhibit α-glucosidase with an IC50 value of 0.5677 mg/mL, which is close to that of the reference drug acarbose. Moreover, in vivo hypoglycemic assays revealed that the CNPs significantly reduced fasting blood-glucose levels in mice with diabetes induced by high-fat diet and streptozocin, lowering blood glucose after intragastric administration for 42 days. To the best of our knowledge, this is the first report of CNPs exhibiting α-glucosidase inhibition and a hypoglycemic effect in diabetic mice. These findings suggest the therapeutic potential of CNPs for diabetes.
Funder
the Natural Science Foundation of Education Department of Anhui Province
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献