Abstract
A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]− (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]− (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1–6 were studied. The AC magnetic measurements revealed that most of Compounds 1–6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16–28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1–6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.
Funder
Russian Science Foundation
the Ministry of Science and Education within the State assignment FSRC
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献