Author:
Chanphai Penparapa,Bérubé Gervais,Tajmir-Riahi Heidar-Ali
Abstract
The conjugation of chitosan 15 and 100 KD with anticancer drugs cis– and trans–Pt (NH3)2Cl2 (abbreviated cis–Pt and trans–Pt) were studied at pH 5–6. Using multiple spectroscopic methods and thermodynamic analysis to characterize the nature of drug–chitosan interactions and the potential application of chitosan nanoparticles in drug delivery. Analysis showed that both hydrophobic and hydrophilic contacts are involved in drug–polymer interactions, while chitosan size and charge play a major role in the stability of drug–polymer complexes. The overall binding constants are Kch–15–cis–Pt = 1.44 (±0.6) × 105 M−1, Kch–100–cis–Pt = 1.89 (±0.9) × 105 M−1 and Kch–15–trans–Pt = 9.84 (±0.5) × 104 M−1, and Kch–100–trans–Pt = 1.15 (±0.6) × 105 M−1. More stable complexes were formed with cis–Pt than with trans–Pt–chitosan adducts, while stronger binding was observed for chitosan 100 in comparison to chitosan 15 KD. This study indicates that polymer chitosan 100 is a stronger drug carrier than chitosan 15 KD in vitro.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献