A Nature-Inspired Design Yields a New Class of Steroids Against Trypanosomatids

Author:

Aguilera Elena,Perdomo Cintya,Espindola Alejandra,Corvo Ileana,Faral-Tello Paula,Robello CarlosORCID,Serna Elva,Benítez Fátima,Riveros Rocío,Torres Susana,Vera de Bilbao Ninfa I.,Yaluff Gloria,Alvarez GuzmánORCID

Abstract

Chagas disease and Leishmaniasis are neglected endemic protozoan diseases recognized as public health problems by the World Health Organization. These diseases affect millions of people around the world however, efficient and low-cost treatments are not available. Different steroid molecules with antimicrobial and antiparasitic activity were isolated from diverse organisms (ticks, plants, fungi). These molecules have complex structures that make de novo synthesis extremely difficult. In this work, we designed new and simpler compounds with antiparasitic potential inspired in natural steroids and synthesized a series of nineteen steroidal arylideneketones and thiazolidenehydrazines. We explored their biological activity against Leishmania infantum, Leishmania amazonensis, and Trypanosoma cruzi in vitro and in vivo. We also assayed their genotoxicity and acute toxicity in vitro and in mice. The best compound, a steroidal thiosemicarbazone compound 8 (ID_1260) was active in vitro (IC50 200 nM) and in vivo (60% infection reduction at 50 mg/kg) in Leishmania and T. cruzi. It also has low toxicity in vitro and in vivo (LD50 >2000 mg/kg) and no genotoxic effects, being a promising compound for anti-trypanosomatid drug development.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

1. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals

2. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning

3. A regional fight against Chagas disease: Lessons learned from a successful collaborative partnership;Salerno;Rev Panam Salud Publica.,2015

4. Weekly Epidemiological Record Relevé Épidémiologique Hebdomadaire,2016

5. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas' Disease

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3