Streptococcus thermophilus: A Source of Postbiotics Displaying Anti-Inflammatory Effects in THP 1 Macrophages

Author:

Allouche Rania1ORCID,Hafeez Zeeshan1ORCID,Dary-Mourot Annie1ORCID,Genay Magali1ORCID,Miclo Laurent1ORCID

Affiliation:

1. CALBINOTOX, Université de Lorraine, F-54000 Nancy, France

Abstract

In addition to traditional use in fermented dairy products, S. thermophilus also exhibits anti-inflammatory properties both in live and heat-inactivated form. Recent studies have highlighted that some hydrolysates from surface proteins of S. thermophilus could be responsible partially for overall anti-inflammatory activity of this bacterium. It was hypothesized that anti-inflammatory activity could also be attributed to peptides resulting from the digestion of intracellular proteins of S. thermophilus. Therefore, total intracellular proteins (TIP) from two phenotypically different strains, LMD-9 and CNRZ-21N, were recovered by sonication followed by ammonium sulphate precipitation. The molecular masses of the TIP of both strains were very close to each other as observed by SDS-PAGE. The TIP were fractionated by size exclusion fast protein liquid chromatography to obtain a 3–10 kDa intracellular protein (IP) fraction, which was then hydrolysed with pancreatic enzyme preparation, Corolase PP. The hydrolysed IP fraction from each strain exhibited anti-inflammatory activity by modulating pro-inflammatory mediators, particularly IL-1β in LPS-stimulated THP-1 macrophages. However, a decrease in IL-8 secretion was only observed with hydrolysed IP fraction from CNRZ-21N, indicating that strain could be an important parameter in obtaining active hydrolysates. Results showed that peptides from the 3–10 kDa IP fraction of S. thermophilus could therefore be considered as postbiotics with potential beneficial effects on human health. Thus, it can be used as a promising bioactive ingredient for the development of functional foods to prevent low-grade inflammation.

Funder

Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3