Preparation of Poly(glycidyl methacrylate) (PGMA) and Amine Modified PGMA Adsorbents for Purification of Glucosinolates from Cruciferous Plants

Author:

Cheng Li,Wu Jianpeng,Liang HaoORCID,Yuan Qipeng

Abstract

Glucosinolates (GLs) are of great interest for their potential as antioxidant and anticancer compounds. In this study, macroporous crosslinked copolymer adsorbents of poly (glycidyl methacrylate) (PGMA) and its amine (ethylenediamine, diethylamine, triethylamine)-modified derivatives were prepared and used to purify the GLS glucoerucin in a crude extract obtained from a cruciferous plant. These four adsorbents were evaluated by comparing their adsorption/desorption and decolorization performance for the purification of glucoerucin from crude plant extracts. According to the results, the strongly basic triethylamine modified PGMA (PGMA-III) adsorbent showed the best adsorption and desorption capacity of glucoerucin, and its adsorption data was a good fit to the Freundlich isotherm model and pseudo-second-order kinetics; the PGMA adsorbent gave the optimum decolorization performance. Furthermore, dynamic adsorption/desorption experiments were carried out to optimize the purification process. Two glass columns were serially connected and respectively wet-packed with PGMA and PGMA-III adsorbents so that glucoerucin could be decolorized and isolated from crude extracts in one process. Compared with KCl solution, aqueous ammonia was a preferable desorption solvent for the purification of glucoerucin and overcame the challenges of desalination efficiency, residual methanol and high operation costs. The results showed that after desorption with 10% aqueous ammonia, the purity of isolated glucoerucin was 74.39% with a recovery of 80.63%; after decolorization with PGMA adsorbent, the appearance of glucoerucin was improved and the purity increased by 11.30%. The process of using serially connected glass columns, wet-packed with PGMA and PGMA-III, may provide a simple, low-cost, and efficient method for the purification of GLs from cruciferous plants.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3