The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid

Author:

Zhang Dongliang1ORCID,Jia Dongsheng1,Fang Zhou1,Min Hua2,Xu Xiaoyi1,Li Ying1ORCID

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Technology Transfer Center, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Bacillus anthracis has gained international attention as a deadly bacterium and a potentially deadly biological warfare agent. Dipicolinic acid (DPA) is the main component of the protective layer of anthracis spores, and is also an anthrax biomarker. Therefore, it is of great significance to explore an efficient and sensitive DPA detection method. Herein, a novel ratio hybrid probe (CQDs-PIL-Eu3+) was prepared by a simple one-step hydrothermal method using carbon quantum dots (CQDs) as an internal reference fluorescence and a covalent bond between CQDs and Eu3+ by using a polyionic liquid (PIL) as a bridge molecule. The ratiometric fluorescence probe was found to have the characteristics of sensitive fluorescence visual sensing in detecting DPA. The structure and the sensing properties of CQDs-PIL-Eu3+ were investigated in detail. In particular, the fluorescence intensity ratio of Eu3+ to CQDs (I616/I440) was linear with the concentration of DPA in the range of 0–50 μM, so the detection limit of the probe was as low as 32 nm, which was far lower than the DPA dose released by the number of anthrax spores in human body (60 μM) and, thus, can achieve sensitive detection. Therefore, the ratiometric fluorescence probe in this work has the characteristics of strong anti-interference, visual sensing, and high sensitivity, which provides a very promising scheme for the realization of anthrax biomarker DPA detection.

Funder

National Natural Science Foundation of China

State Key Laboratory of Pollution Control and Resource Reuse Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3