Abstract
Cannabis sativa L. is widely used as recreational illegal drugs. Illicit Cannabis profiling, comparing seized samples, is challenging due to natural Cannabis heterogeneity. The aim of this study was to use GC–FID and GC–MS herbal fingerprints for intra (within)- and inter (between)-location variability evaluation. This study focused on finding an acceptable threshold to link seized samples. Through Pearson correlation-coefficient calculations between intra-location samples, ‘linked’ thresholds were derived using 95% and 99% confidence limits. False negative (FN) and false positive (FP) error rate calculations, aiming at obtaining the lowest possible FP value, were performed for different data pre-treatments. Fingerprint-alignment parameters were optimized using Automated Correlation-Optimized Warping (ACOW) or Design of Experiments (DoE), which presented similar results. Hence, ACOW data, as reference, showed 54% and 65% FP values (95 and 99% confidence, respectively). An additional fourth root normalization pre-treatment provided the best results for both the GC–FID and GC–MS datasets. For GC–FID, which showed the best improved FP error rate, 54 and 65% FP for the reference data decreased to 24 and 32%, respectively, after fourth root transformation. Cross-validation showed FP values similar as the entire calibration set, indicating the representativeness of the thresholds. A noteworthy improvement in discrimination between seized Cannabis samples could be concluded.
Funder
European Union
Research Foundation - Flanders
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献