Gold(III) to Ruthenium(III) Metal Exchange in Dithiocarbamato Complexes Tunes Their Biological Mode of Action for Cytotoxicity in Cancer Cells

Author:

Dalla Pozza Maria,Orvain Christophe,Brustolin Leonardo,Pettenuzzo Nicolò,Nardon Chiara,Gaiddon ChristianORCID,Fregona Dolores

Abstract

Malignant tumors have affected the human being since the pharaoh period, but in the last century the incidence of this disease has increased due to a large number of risk factors, including deleterious lifestyle habits (i.e., smoking) and the higher longevity. Many efforts have been spent in the last decades on achieving an early stage diagnosis of cancer, and more effective cures, leading to a decline in age-standardized cancer mortality rates. In the last years, our research groups have developed new metal-based complexes, with the aim to obtain a better selectivity for cancer cells and less side effects than the clinically established reference drug cisplatin. This work is focused on four novel Au(III) and Ru(III) complexes that share the piperidine dithiocarbamato (pipe-DTC) as the ligand, in a different molar ratio. The compounds [AuCl2(pipeDTC)], [Au(pipeDTC)2]Cl, [Ru(pipeDTC)3] and β-[Ru2(pipeDTC)5] have been synthesized and fully characterized by several chemical analyses. We have then investigated their biological properties in two different cell lines, namely, AGS (gastric adenocarcinoma) and HCT116 (colon carcinomas), showing significant differences among the four compounds. First, the two gold-based compounds and β-[Ru2(pipeDTC)5] display IC50 in the µM range, significantly lower than cisplatin. Second, we showed that [AuCl2(pipeDTC)] and β-[Ru2(pipeDTC)5]Cl drive different molecular mechanisms. The first was able to induce the protein level of the DNA damage response factor p53 and the autophagy protein p62, in contrast to the second that induced the ATF4 protein level, but repressed p62 expression. This study highlights that the biological activity of different complexes bringing the same organic ligand depends on the electronic and structural properties of the metal, which are able to fine tune the biological properties, giving us precious information that can help to design more selective anticancer drugs.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3