Rhamnopyranoside-Based Fatty Acid Esters as Antimicrobials: Synthesis, Spectral Characterization, PASS, Antimicrobial, and Molecular Docking Studies

Author:

Sanaullah Abul Fazal Muhammad1ORCID,Devi Puja1,Hossain Takbir1ORCID,Sultan Sulaiman Bin1ORCID,Badhon Mohammad Mohib Ullah1,Hossain Md. Emdad2ORCID,Uddin Jamal3ORCID,Patwary Md. Abdul Majed4ORCID,Kazi Mohsin5ORCID,Matin Mohammed Mahbubul1ORCID

Affiliation:

1. Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh

2. Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

3. Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA

4. Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh

5. Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

Abstract

The most widely used and accessible monosaccharides have a number of stereogenic centers that have been hydroxylated and are challenging to chemically separate. As a result, the task of regioselective derivatization of such structures is particularly difficult. Considering this fact and to get novel rhamnopyranoside-based esters, DMAP-catalyzed di-O-stearoylation of methyl α-l-rhamnopyranoside (3) produced a mixture of 2,3-di-O- (4) and 3,4-di-O-stearates (5) (ratio 2:3) indicating the reactivity of the hydroxylated stereogenic centers of rhamnopyranoside as 3-OH > 4-OH > 2-OH. To get novel biologically active rhamnose esters, di-O-stearates 4 and 5 were converted into six 4-O- and 2-O-esters 6–11, which were fully characterized by FT-IR, 1H, and 13C NMR spectral techniques. In vitro antimicrobial assays revealed that fully esterified rhamnopyranosides 6–11 with maximum lipophilic character showed better antifungal susceptibility than antibacterial activity. These experimental findings are similar to the results found from PASS analysis data. Furthermore, the pentanoyl derivative of 2,3-di-O-stearate (compound 6) showed better antifungal functionality against F. equiseti and A. flavus, which were found to be better than standard antibiotics. To validate the better antifungal results, molecular docking of the rhamnose esters 4–11 was performed with lanosterol 14α-demethylase (PDB ID: 3LD6), including the standard antifungal antibiotics ketoconazole and fluconazole. In this instance, the binding affinities of 10 (−7.6 kcal/mol), 9 (−7.5 kcal/mol), and 7 (−6.9 kcal/mol) were better and comparable to fluconazole (−7.3 kcal/mol), indicating the likelihood of their use as non-azole type antifungal drugs in the future.

Funder

Ministry of Science and Technology, Bangladesh

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3