Synthesis, X-ray Structure, Hirshfeld, DFT and Biological Studies on a Quinazolinone-Nitrate Complex

Author:

Fathalla Eman M.,Altowyan Mezna Saleh,Albering Jörg H.,Barakat AssemORCID,Abu-Youssef Morsy A. M.,Soliman Saied M.ORCID,Badr Ahmed M. A.

Abstract

The reaction of 4-hydroxyquinazoline (4HQZ) with aqueous solution of nitric acid afforded the corresponding quinazolinone-nitrate (4HQZN) complex in very good yield. The crystal structure of 4HQZN was determined and its structural and supramolecular structural aspects were analyzed. 4HQZN crystallized in the space group P21/c and monoclinic crystal system with one [4HQZ-H]+[NO3]− formula and Z = 4. Its supramolecular structure could be described as a 2D infinite layers in which the 4HQZN molecules are connected via N-H…O and C-H…O hydrogen bridges. Using DFT calculations, the relative stability of five suggested isomers of 4HQZN were predicted. It was found that the medium effects have strong impact not only on the isomers’ stability but also on the structure of the 4HQZN. It was found that the structure of 4HQZN in DMSO and methanol matched well with the reported X-ray structure which shed the light on the importance of the intermolecular interactions on the isomers’ stability. The structure of 4HQZN could be described as a proton transfer complex in which the nitrate anion acting as an e-donor whiles the protonated 4HQZ is an e-acceptor. In contrast, the structure of the isolated 4HQZN in gas phase and in cyclohexane could be described as a 4HQZ…HNO3 hydrogen bonded complex. Biological screening of the antioxidant, anticancer and antimicrobial activities of 4HQZ and 4HQZN was presented and compared. It was found that, 4HQZN has higher antioxidant activity (IC50 = 36.59 ± 1.23 µg/mL) than 4HQZ. Both of 4HQZ and 4HQZN showed cell growth inhibition against breast (MCF-7) and lung (A-549) carcinoma cell lines with different extents. The 4HQZ has better activity with IC50 of 178.08 ± 6.24 µg/mL and 119.84 ± 4.98 µg/mL, respectively. The corresponding values for 4HQZN are 249.87 ± 9.71 µg/mL and 237.02 ± 8.64 µg/mL, respectively. Also, the antibacterial and antifungal activities of 4HQZN are higher than 4HQZ against all studied microbes. The most promising result is for 4HQZN against A. fumigatus (MIC = 312.5 μg/mL).

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3