High Coulomb Efficiency Sn–Co Alloy/rGO Composite Anode Material for Li–ion Battery with Long Cycle–Life

Author:

Shen Ding1,Jia Mengyuan1,Li Mingyue12,Fu Xiaofan1,Liu Yaohan1,Dong Wei1,Yang Shaobin1

Affiliation:

1. College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China

2. Institute of Engineering Technology and Natural Science, Belgorod State University, Belgorod 308015, Russia

Abstract

The low cycle performance and low Coulomb efficiency of tin-based materials confine their large–scale commercial application for lithium–ion batteries. To overcome the shortage of volume expansion of pristine tin, Sn–Co alloy/rGO composites have been successfully synthesized by chemical reduction and sintering methods. The effects of sintering temperature on the composition, structure and electrochemical properties of Sn–Co alloy/rGO composites were investigated by experimental study and first-principles calculation. The results show that Sn–Co alloys are composed of a large number of CoSn and trace CoSn2 intermetallics, which are uniformly anchored on graphene nanosheets. The sintering treatment effectively improves the electrochemical performance, especially for the first Coulomb efficiency. The first charge capacity of Sn–Co alloy/rGO composites sintered at 450 °C is 675 mAh·g−1, and the corresponding Coulomb efficiency reaches 80.4%. This strategy provides a convenient approach to synthesizing tin-based materials for high-performance lithium–ion batteries.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation Funded Project

Discipline Innovation Team of Liaoning Technical University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3