Adsorption and Desorption Performance and Mechanism of Tetracycline Hydrochloride by Activated Carbon-Based Adsorbents Derived from Sugar Cane Bagasse Activated with ZnCl2

Author:

Cai Yixin,Liu Liming,Tian Huafeng,Yang Zhennai,Luo Xiaogang

Abstract

Adsorption and desorption behaviors of tetracycline hydrochloride by activated carbon-based adsorbents derived from sugar cane bagasse modified with ZnCl2 were investigated. The activated carbon was tested by SEM, EDX, BET, XRD, FTIR, and XPS. This activated carbon exhibited a high BET surface area of 831 m2 g−1 with the average pore diameter and pore volume reaching 2.52 nm and 0.45 m3 g−1, respectively. The batch experimental results can be described by Freundlich equation, pseudo-second-order kinetics, and the intraparticle diffusion model, while the maximum adsorption capacity reached 239.6 mg g−1 under 318 K. The effects of flow rate, bed height, initial concentration, and temperature were studied in fixed bed adsorption experiments, and adsorption data were fitted with six dynamic adsorption models. The results of characterizations and the batch experiments were analyzed to study the adsorption and desorption mechanisms. Tetracycline hydrochloride and activated carbon were bonded together by π–π interactions and cation–π bonds. Ethanol was used as an eluent which bonded with 10 hydrogen bond acceptors on tetracycline hydrochloride to form a complex by hydrogen bonding to achieve recycling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3