Photophysical Exploration of Alectinib and Rilpivirine: Insights from Theory and Experiment

Author:

Zhang Chun1,Yang Yuting1,Gan Suya1,Ren Aimin2,Zhou Yu-Bo34,Li Jia34,Xiang Da-Jun5ORCID,Wang Wen-Long1ORCID

Affiliation:

1. School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China

2. Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road 2#, Changchun 130061, China

3. National Center for Drug Screening, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

4. Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China

5. Xishan People’s Hospital of Wuxi City, Wuxi 214105, China

Abstract

Due to the excellent characteristics of fluorescence-based imaging, such as non-invasive detection of biomarkers in vitro and in vivo with high sensitivity, good spatio-temporal resolution and fast response times, it has shown significant prospects in various applications. Compounds with both biological activities and fluorescent properties have the potential for integrated diagnosis and treatment application. Alectinib and Rilpivirine are two excellent drugs on sale that represent a clinically approved targeted therapy for ALK-rearranged NSCLC and have exhibited more favorable safety and tolerance profiles in Phase III clinical trials, ECHO and THRIVE, respectively. The optical properties of these two drugs, Alectinib and Rilpivirine, were deeply explored, firstly through the simulation of molecular structures, electrostatic potential, OPA/TPA and emission spectral properties and experiments on UV-vis spectra, fluorescence and cell imaging. It was found that Alectinib exhibited 7.8% of fluorescence quantum yield at the 450 nm excited wavelength, due to a larger electronic transition dipole moment (8.41 Debye), bigger charge transition quantity (0.682 e) and smaller reorganization energy (2821.6 cm−1). The stronger UV-vis spectra of Rilpivirine were due to a larger electron–hole overlap index (Sr: 0.733) and were also seen in CDD plots. Furthermore, Alectinib possessed obvious active two-photon absorption properties (δmaxTPA* ϕ = 201.75 GM), which have potential TPA imaging applications in bio-systems. Lastly, Alectinib and Rilpivirine displayed green fluorescence in HeLa cells, suggesting the potential ability for biological imaging. Investigation using theoretical and experimental methods is certainly encouraged, given the particular significance of developing integrated diagnosis and treatment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

High Level Personnel Project of Jiangsu Province

Xishan People’s Hospital of Wuxi City

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3