Study on the Structure of a Mixed KCl and K2SO4 Aqueous Solution Using a Modified X-ray Scattering Device, Raman Spectroscopy, and Molecular Dynamics Simulation

Author:

Qiao Mengdan,Li FeiORCID,Meng Xianze,Wang Meiling,Zhu Hanyu,Ji Zhiyong,Zhao Yingying,Liu Jie,Wang Shizhao,Guo Xiaofu,Bi JingtaoORCID,Yuan Junsheng

Abstract

The microstructure of a mixed KCl and K2SO4 aqueous solution was studied using X-ray scattering (XRS), Raman spectroscopy, and molecular dynamics simulation (MD). Reduced structure functions [F(Q)], reduced pair distribution functions [G(r)], Raman spectrum, and pair distribution functions (PDF) were obtained. The XRS results show that the main peak (r = 2.81 Å) of G(r) shifted to the right of the axis (r = 3.15 Å) with increased KCl and decreased K2SO4. The main peak was at r = 3.15 Å when the KCl concentration was 26.00% and the K2SO4 concentration was 0.00%. It is speculated that this phenomenon was caused by the main interaction changing, from K-OW (r = 2.80 Å) and OW-OW (r = 2.80 Å), to Cl−-OW (r = 3.14 Å) and K+-Cl− (r = 3.15 Å). According to the trend of the hydrogen bond structure in the Raman spectrum, when the concentration of KCl was high and K2SO4 was low, the destruction of the tetrahedral hydrogen bond network in the solution was more serious. This shows that the destruction strength of the anion to the hydrogen bond network structure in solution was Cl− > SO42−. In the MD simulations, the coordination number of OW-OW decreased with increasing KCl concentration, indicating that the tetrahedral hydrogen bond network was severely disrupted, which confirmed the results of the Raman spectroscopy. The hydration radius and coordination number of SO42− in the mixed solution were larger than Cl−, thus revealing the reason why the solubility of KCl in water was greater than that of K2SO4 at room temperature.

Funder

Natural Science Fund of Hebei Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3