Synthesis of Non-Aromatic Pyrroles Based on the Reaction of Carbonyl Derivatives of Acetylene with 3,3-Diaminoacrylonitriles

Author:

Silaichev Pavel S.12,Dianova Lidia N.1,Beryozkina Tetyana V.1,Berseneva Vera S.1,Maslivets Andrey N.2ORCID,Bakulev Vasiliy A.1

Affiliation:

1. Technology of Organic Synthesis Department, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia

2. Department of Chemistry, Perm State University, 15 Bukireva Street, Perm 614990, Russia

Abstract

The reaction of 3,3-diaminoacrylonitriles with DMAD and 1,2-dibenzoylacetylene was studied. It is shown that the direction of the reaction depends on the structure both of acetylene and of diaminoacrylonitrile. In the reaction of DMAD with acrylonitriles bearing a monosubstituted amidine group, 1-substituted 5-amino-2-oxo-pyrrole-3(2H)ylidenes are formed. On the other hand, a similar reaction of acrylonitriles containing the N,N-dialkylamidine group affords 1-NH-5-aminopyrroles. In both cases, pyrroles containing two exocyclic double bonds are formed in high yields. A radically different type of pyrroles containing one exocyclic C=C bond and sp3 hybrid carbon in the cycle is formed in reactions of 3,3-diaminoacrylonitriles with 1,2-diaroylacetylenes. As in reactions with DMAD, the interaction of 3,3-diaminoacrylonitriles with 1,2-dibenzoylacetylene can lead, depending on the structure of the amidine fragment, both to NH- and 1-substituted pyrroles. The formation of the obtained pyrrole derivatives is explained by the proposed mechanisms of the studied reactions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3