Abstract
Coumarin derivatives have been reported as strong antifungal agents against various phytopathogenic fungi. In this study, inhibitory effects of nine coumarinyl Schiff bases were evaluated against the plant pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiourum). The compounds were demonstrated to be efficient antifungal agents against Macrophomina phaseolina. The results of molecular docking on the six enzymes related to the antifungal activity suggested that the tested compounds act against plant pathogenic fungi, inhibiting plant cell-wall-degrading enzymes such as endoglucanase I and pectinase. Neither compound exhibited inhibitory effects against two beneficial bacteria (Bacillus mycoides and Bradyrhizobium japonicum) and two entomopathogenic nematodes. However, compound 9 was lethal (46.25%) for nematode Heterorhabditis bacteriophora and showed an inhibitory effect against acetylcholinesterase (AChE) (31.45%), confirming the relationship between these two activities. Calculated toxicity and the pesticide-likeness study showed that compound 9 was the least lipophilic compound with the highest aquatic toxicity. A molecular docking study showed that compounds 9 and 8 bind directly to the active site of AChE. Coumarinyl Schiff bases are promising active components of plant protection products, safe for the environment, human health, and nontarget organisms.
Funder
Croatian Science Foundation
European Project
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference75 articles.
1. Plant Pathogenic Fungi
2. Fusarium vrste izolirane s pšenice i kukuruza u istočnoj Hrvatskoj;Ćosić;Poljoprivreda,2004
3. Fusarium species isolated from plant debris in Eastern Croatia;Ćosić;Cereal Res. Commun.,2008
4. Plant protection products and their sustainable and environmentally friendly use;Pogăcean;Environ. Eng. Manag. J.,2009
5. Role of modern chemistry in sustainable arable crop protection
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献