Removal of Acidic Organic Ionic Dyes from Water by Electrospinning a Polyacrylonitrile Composite MIL101(Fe)-NH2 Nanofiber Membrane

Author:

Jia Jiao,Wu Hao,Xu Le,Dong Fengchun,Jia Yongtang,Liu XiORCID

Abstract

A nanofiber metal–organic framework filter, a polyacrylonitrile (PAN) nanofiber membrane composite with an iron/2-amino-terephthalic acid-based metal–organic framework (MIL101(Fe)-NH2), was prepared by one-step electrospinning. MIL101(Fe)-NH2 was combined into the polymer nanofibers in situ. PAN-MIL101(Fe)-NH2 composite nanofiber membranes (NFMs) were prepared from a homogeneous spinning stock containing MIL101(Fe)-NH2 prebody fluid and PAN. Crystallization of MIL101(Fe)-NH2 and solidification of the polymer occurred simultaneously during electrospinning. The PAN-MIL101(Fe)-NH2 composite NFM showed that MIL101(Fe)-NH2 was uniformly distributed throughout the nanofiber and was used to adsorb and separate acidic organic ionic dyes from the aqueous solution. The results of Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analysis showed that MIL101(Fe)-NH2 crystals were effectively bonded in the PAN nanofiber matrix, and the crystallinity of MIL101(Fe)-NH2 crystals remained good, while the distribution was uniform. Owing to the synergistic effect of PAN and the MIL101(Fe)-NH2 crystal, the PAN-MIL101(Fe)-NH2 composite NFM showed a fast adsorption rate for acidic ionic dyes. This study provides a reference for the rapid separation and purification of organic ionic dyes from wastewater.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Department

Guangdong Provincial Department of Education

Wuyi University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3