Affiliation:
1. Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
Abstract
The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)–Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2–Sam and Ship2–Sam reciprocal binding interfaces. Next, potential differences in the chemical–physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2–Sam and Ship2–Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2–Sam/Ship2–Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献