Morphology Regulation of Zeolite MWW via Classical/Nonclassical Crystallization Pathways

Author:

Zi Wenwen1,Hu Zejing1,Jiang Xiangyu1,Zhang Junjun2ORCID,Guo Chengzhi1,Qu Konggang1,Tao Shuo1,Tan Dengran1,Liu Fangling1

Affiliation:

1. School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China

2. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Abstract

The morphology and porosity of zeolites have an important effect on adsorption and catalytic performance. In the work, simple inorganic salts, i.e., Na salts were used to synthesize MWW zeolite using the organic compound 1-Butyl-2,3-dimethyl-1H-imidazol-3-ium hydroxide as a structure-directing agent and the morphology was regulated by the alkali metals. The sample synthesized without Na salts shows a dense hexagon morphology, while different morphologies like ellipsoid, wool ball, and uniform hexagon appear when using NaOH, Na2CO3, and NaHCO3, respectively. Moreover, the impact of Na salts on the induction, nucleation, and the evolution of crystal growth was studied. Different kinds of Na salts have a different impact on the crystalline induction time in the order of NaHCO3 (36 h) < Na2CO3 (72 h) = NaOH (72 h). Meanwhile, the crystalline mechanism with the cooperation of inorganic salts and the organic SDAs is proposed. NaOH- and Na2CO3-MWW zeolite crystallized with a network of hydrogel via the nonclassical pathway in the system; however, the product is synthesized via a classical route in the NaHCO3 environment. This work provides information about MWW zeolite crystallization and modulating diverse morphologies by adjusting the process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Guangyue Young Scholar Innovation Team of Liaocheng University

Innovation and Entrepreneurship Project for College Students of Liaocheng University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3