Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study

Author:

Akhdar HananORCID,Alanazi Reem,Alanazi Nadyah,Alodhayb AbdullahORCID

Abstract

Gold nanoparticles (GNPs) are used in proton therapy radio-sensitizers to help increase the dose of radiation to targeted tumors by the emission of secondary electrons. Thus, this study aimed to investigate the link between secondary electron yields produced from a nanoshell of GNPs and dose absorption according to the distance from the center of the nanoparticles by using a Monte Carlo model. Microscopic evaluation was performed by modeling the interactions of secondary electrons in a phase-space file (PSF), where the number of emitted electrons was calculated within a spherical GNP of 15 nm along with the absorbed dose near it. Then, the Geant4-DNA physics list was used to facilitate the tracking of low-energy electrons down to an energy below 50 eV in water. The results show a remarkable change in the number of secondary electrons, which can be compared at concentrations less than and greater than 5 mg/mL, with increased secondary electron production exhibited around NPs within a distance of 10–100 nm from the surface of all nanospheres. It was found that there was a steep dose enhancement drop-off up to a factor of dose enhancement factor (DFE) ≤ 1 within a short distance of 100 nm from the surface of the GNPs, which revealed that the dose enhancement existed locally at nanometer distances from the GNPs. Overall, our results indicate that the physical interactions of protons with GNP clusters should not be considered as being directly responsible for the radio-sensitization effect, but should be regarded as playing a major role in NP properties and concentrations, which has a subsequent impact on local dose enhancement.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3