Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures

Author:

Liu Kai1ORCID,Qiao Zhun1,Gao Chuanbo1ORCID

Affiliation:

1. Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China

Abstract

A bimetallic core–shell nanostructure is a versatile platform for achieving intriguing optical and catalytic properties. For a long time, this core–shell nanostructure has been limited to ones with noble metal cores. Otherwise, a galvanic replacement reaction easily occurs, leading to hollow nanostructures or completely disintegrated ones. In the past few years, great efforts have been devoted to preventing the galvanic replacement reaction, thus creating an unconventional class of core–shell nanostructures, each containing a less-stable-metal core and a noble metal shell. These new nanostructures have been demonstrated to show unique optical and catalytic properties. In this work, we first briefly summarize the strategies for synthesizing this type of unconventional core–shell nanostructures, such as the delicately designed thermodynamic control and kinetic control methods. Then, we discuss the effects of the core–shell nanostructure on the stabilization of the core nanocrystals and the emerging optical and catalytic properties. The use of the nanostructure for creating hollow/porous nanostructures is also discussed. At the end of this review, we discuss the remaining challenges associated with this unique core–shell nanostructure and provide our perspectives on the future development of the field.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of Shaanxi Province

the China Postdoctoral Science Foundation

the Natural Science Basic Research Plan in Shaanxi Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3