Thinking Inside the Box: A Novel Approach to Smoke Taint Mitigation Trials

Author:

Szeto ColleenORCID,Ristic RenataORCID,Wilkinson KerryORCID

Abstract

When bushfires occur near wine regions, grapevine exposure to smoke can taint grapes due to the uptake of smoke-derived volatile compounds that can subsequently impart unpleasant smoky, medicinal, burnt rubber and ashy characters to wine. Whereas early research sought to understand the effects of smoke on grapevine physiology, and grape and wine chemistry, research efforts have shifted towards the strategic imperative for effective mitigation strategies. This study evaluated the extent to which excised grape bunches could be reproducibly tainted during smoke exposure in a purpose-built ‘smoke box’. The volatile phenol composition of grapes exposed to smoke for 30 min was similar to that of smoke-affected grapes from field trials involving grapevine exposure to smoke. Some variation was observed between replicate smoke treatments, but implementing appropriate controls and experimental replication enabled the smoke box to be used to successfully evaluate the efficacy of several agrochemical sprays and protective coverings as methods for mitigating the smoke exposure of grapes. Whereas the agrochemical sprays did not provide effective protection from smoke, enclosing grape bunches in activated carbon fabric prevented the uptake of up to 98% of the smoke-derived volatile phenols observed in smoke-affected grapes. As such, the study demonstrated not only a convenient, efficient approach to smoke taint research that overcomes the constraints associated with vineyard-based field trials, but also a promising new strategy for preventing smoke taint.

Funder

ARC Training Centre for Innovative Wine Production

Australian Government

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3