Chemical Constitution, Pharmacological Effects and the Underlying Mechanism of Atractylenolides: A Review

Author:

Xie Zhiyi123,Lin Minqiu23,He Xinglishang23,Dong Yingjie23,Chen Yigong1,Li Bo23,Chen Suhong23,Lv Guiyuan1

Affiliation:

1. College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China

2. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China

3. Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China

Abstract

Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.

Funder

The National Natural Science Foundation of China

Key R&D Program of Zhejiang Province

The National Key R&D Plan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3