The Autocatalytic Chemical Reaction of a Soluble Biopolymer Derived from Municipal Biowaste

Author:

Padoan Elio1ORCID,Montoneri Enzo1,Baglieri Andrea2ORCID,Contillo Francesco3,Francavilla Matteo3ORCID,Negre Michéle1

Affiliation:

1. Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, 10095 Grugliasco, TO, Italy

2. Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università di Catania, 95123 Catania, CT, Italy

3. STAR Integrated Research Unit, Università di Foggia, 71121 Foggia, FG, Italy

Abstract

The paper discusses the perspectives of further implementation of the autocatalytic properties of a soluble biopolymer (SBP) derived from municipal biowastes for the realisation of a biorefinery producing value-added bio-products for consumer use. The reaction of an SBP and water is reported to cause the depolymerisation and oxidation of the pristine SBP organic matter with the formation of carboxyl-functionalised polymers having lower molecular weight and CO2. These findings demonstrate the oxidation of the SBP via water, which could only occur through the production of O and OH radicals catalysed by the SBP. According to the adopted experimental plan, the anaerobic digestate supplied by an Italian municipal biowaste treatment plant was hydrolysed in pH 13 water at 60 °C. The dry product was re-dissolved in plain water at pH 10 and used as a control against the same solution with hydrogen peroxide at 0.1–3 H2O2 moles per SBP carbon mole added. The control and test solutions were kept at room temperature, in the dark or in a climatic chamber under irradiation with simulated solar light, until the pH of the solutions remained constant. Afterwards, the solutions were processed to recover and analyse the crude soluble products. The present work reports the results obtained for the control solution and for the test solutions treated in the presence and absence of H2O2, with and without pH control, in the dark and under irradiation with simulated solar light.

Funder

the European Commission within the LIFE 2019 program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3