Stimulation of Hemolysis and Eryptosis by α-Mangostin through Rac1 GTPase and Oxidative Injury in Human Red Blood Cells

Author:

Alghareeb Sumiah A.1,Alsughayyir Jawaher1,Alfhili Mohammad A.1ORCID

Affiliation:

1. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia

Abstract

Background: Chemotherapy-related anemia is prevalent in up to 75% of patients, which may arise due to hemolysis and eryptosis. Alpha-mangostin (α-MG) is a polyphenolic xanthonoid found in the mangosteen tree (Garcinia mangostana) whose antitumor medicinal properties are well-established. Nevertheless, the potential toxic effects of α-MG on red blood cells (RBCs) have, as of yet, not been as well studied. Methods: RBCs were exposed to 1–40 μM of α-MG for 24 h at 37 °C. Hemolysis and related markers were measured using colorimetric assays, eryptotic cells were identified through Annexin-V-FITC, Ca2+ was detected with Fluo4/AM, and oxidative stress was assessed through H2DCFDA using flow cytometry. The toxicity of α-MG was also examined in the presence of specific signal transduction inhibitors and in whole blood. Results: α-MG at 10–40 μM caused dose-dependent hemolysis with concurrent significant elevation in K+, Mg2+, and LDH leakage, but at 2.5 μM it significantly increased the osmotic resistance of cells. A significant increase was also noted in Annexin-V-binding cells, along with intracellular Ca2+, oxidative stress, and cell shrinkage. Moreover, acetylcholinesterase activity was significantly inhibited by α-MG, whose hemolytic potential was significantly ameliorated by the presence of BAPTA-AM, vitamin C, NSC23766, and isosmotic sucrose but not urea. In whole blood, α-MG significantly depleted intracellular hemoglobin stores and was selectively toxic to platelets and monocytes. Conclusions: α-MG possesses hemolytic and eryptotic activities mediated through Ca2+ signaling, Rac1 GTPase activity, and oxidative injury. Also, α-MG leads to accelerated cellular aging and specifically targets platelet and monocyte populations in a whole blood milieu.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3