Microstructure, Mechanical and Electrical Properties of Hybrid Copper Matrix Composites with Fe Microspheres and rGO Nanosheets

Author:

Zhang Xinjiang,He MengORCID,Zhan Yongzhong,Yang Wenchao,Wu Kaifeng

Abstract

Copper matrix composites have a wide application as magnetic conductive materials, electromagnetic materials, electrical discharge machining materials, etc. Such materials are expected to have a good combination of excellent electrical conductivity and good mechanical strength. In this work, micro/nano hybrid reinforcements with Fe microspheres and reduced graphene oxide (rGO) nanosheets were developed for copper matrix composites. The rGO/Fe/Cu powders were firstly wet-mixed and then densified by the vacuum hot-pressing sintering to obtain the bulk compacts. Microstructure, electrical conductivity and mechanical properties of such compacts were investigated. Microstructural result of as-sintered compacts shows that the Fe microspheres could distribute in the matrix uniformly, and rGO nanosheets exhibit both agglomerated and dispersed states. The grain size of Cu matrix decreased with the increase of the rGO content. Hardness, compression and tensile 0.2% yield strength of the as-sintered compacts were improved evidently by the addition of the hybrid Fe/rGO, comparing with pure Cu and single Fe-added composites. However, a lower electrical conductivity appeared in the more rGO-added composites, but still reached more than 33.0% international annealing copper standard (IACS). These performance change could be sought in the spatially geometrical distribution and characteristics of such micro/nano Fe/rGO hybrid addition, and the relevant mechanisms were discussed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3