Multi-Elemental Analysis of Hair and Fingernails Using Energy-Dispersive X-ray Fluorescence (ED XRF) Method Supported by Inductively Coupled Plasma Mass Spectrometry (ICP MS)

Author:

Mierzyńska Zofia1,Niemirska Maria2,Zgonina Kacper2,Bieńkowski Tomasz1,Hryniów Krzysztof13ORCID,Świder Paweł1,Pawlak Katarzyna12ORCID

Affiliation:

1. Masdiag, Żeromskiego 33, 01-882 Warsaw, Poland

2. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

3. Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Abstract

This work compared the multi-element analysis of human hair and nails using inductively coupled plasma mass spectrometry (ICP MS) with an easy, fast, cheap, non-destructive method using energy-dispersive x-ray fluorescence (ED XRF). The ICP MS-based method was more sensitive (over 30 elements could be quantified) and costly (requiring more time, samples, and chemicals). The EDX-based method required laboratory and certified reference materials made of hair for instrument calibration. It was less sensitive (16 elements could be quantified: S, Si, Ca, Br, Fe, Cu, Cr, Mg, Si, K, Mn, Ni, Zn, Se, Sr, Pb), but it allowed us to replace troublesome grinding with the dissolution of keratin-based material with an alkalic agent (tetramethylammonium hydroxide, TMAH) and the formation of stable-for-days pellets. This method is simple, enables automation, and, due to the modification of wells in the autosampler of the EDX system via the immersion of home-designed inserts, it requires smaller amounts of biological material and binder (down to 70 mg instead of 500 mg required by commercially available instrument) to perform analysis. It was concluded that the EDX-based method offers complementary selectivity and sensitivity to ICP MS with the possibility of sample reuse for further analysis.

Funder

National Centre for Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3