Affiliation:
1. Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
Abstract
Co-immobilization of laccase and mediator 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) for wastewater treatment could simultaneously achieve the reusability of laccase and avoid secondary pollution caused by the toxic ABTS. Herein, Fe-induced mineralization was proposed to co-immobilize laccase and ABTS into a metal–organic framework (ZIF-8) within 30 min. Immobilized laccase (Lac@ZIF-8-Fe) prepared at a 1:1 mass ratio of Fe2+ to Zn2+ exhibited enhanced catalytic efficiency (2.6 times), thermal stability, acid tolerance, and reusability compared to free laccase. ABTS was then co-immobilized to form Lac+ABTS@ZIF-8-Fe (ABTS = 261.7 mg/g). Lac@ZIF-8-Fe exhibited significantly enhanced bisphenol A (BPA) removal performance over free laccase due to the local substrate enrichment effect and improved enzyme stability. Moreover, the Lac+ABTS@ZIF-8-Fe exhibited higher BPA removal efficiency than the free laccase+ABTS system, implying the presence of a proximity effect in Lac+ABTS@ZIF-8-Fe. In the successive malachite green (MG) removal, the MG degradation efficiency by Lac@ZIF-8-Fe was maintained at 96.6% at the fifth reuse with only an extra addition of 0.09 mM ABTS in each cycle. As for Lac+ABTS@ZIF-8-Fe, 58.5% of MG was degraded at the fifth cycle without an extra addition of ABTS. Taken together, this research has provided a novel strategy for the design of a co-immobilized laccase and ABTS system for the degradation of organic pollutants.
Funder
National Key Research and Development Program of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献