Abstract
Polyethylene, a thermoplastic resin made by ethylene polymerization, is widely used in electrical insulation. In this study, low-density polyethylene (LDPE) is used as a matrix with micro- and nano-ZnO particles as a filler to produce different proportions of micro- and nano-ZnO composites by melt blending. These samples are characterized by Polarized Light Microscopy (PLM) and FTIR tests, with their conductance measured under different field strengths. The current density vs. electric field strength (J-E) curve of micro- and nano-ZnO composites under different field strengths are measured and analyzed. The J-E curves of different composites at different temperatures are measured to explore conductance with temperature. The results of these tests showed that nano-ZnO composites successfully suppressed conductivity at elevated temperatures and electric field strengths, while micro-ZnO composites increased the conductivity relative to pure LDPE.
Funder
Zhongshan Social Welfare and Basic Research Initiative
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献