Structural Characterization and Electrochemical Studies of Selected Alkaloid N-Oxides

Author:

Dushna Olha12ORCID,Dubenska Liliya2ORCID,Gawor Andrzej1ORCID,Karasińki Jakub1,Barabash Oksana2,Ostapiuk Yurii2,Blazheyevskiy Mykola3ORCID,Bulska Ewa1ORCID

Affiliation:

1. Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland

2. Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine

3. Department of General Chemistry, National University of Pharmacy, Valentynivska 4, 61-168 Kharkiv, Ukraine

Abstract

In this work, we synthesized and confirmed the structure of several alkaloid N-oxides using mass spectrometry and Fourier-transform infrared spectroscopy. We also investigated their reduction mechanisms using voltammetry. For the first time, we obtained alkaloid N-oxides using an oxidation reaction with potassium peroxymonosulfate as an oxidant. The structure was established based on the obtained fragmentation mass spectra recorded by LC-Q-ToF-MS. In the FT-IR spectra of the alkaloid N-oxides, characteristic signals of N-O group vibrations were recorded (bands in the range of 928 cm⁻1 to 971 cm⁻1), confirming the presence of this functional group. Electrochemical reduction studies demonstrated the reduction of alkaloid N-oxides at mercury-based electrodes back to the original form of the alkaloid. For the first time, the products of the electrochemical reduction of alkaloid N-oxides were detected by mass spectrometry. The findings provide insights into the structural characteristics and reduction behaviors of alkaloid N-oxides, offering implications for pharmacological and biochemical applications. This research contributes to a better understanding of alkaloid metabolism and degradation processes, with potential implications for drug development and environmental science.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3