Fabrication and Biological Activities of All-in-One Composite Nanoemulsion Based on Blumea balsamifera Oil-Tea Tree Oil

Author:

Zhu Yue12,Chen Teng12ORCID,Feng Tingting1,Zhang Jiaojiao3ORCID,Meng Zejing1,Zhang Ning4,Luo Gang5,Wang Zuhua12ORCID,Pang Yuxin1,Zhou Ying1

Affiliation:

1. College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China

2. Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

3. College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China

4. School of Acupuncture-Moxibustion and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China

5. Key Laboratory of Medical Microbiology and Parasitology, Key Laboratory of Environmental Pollution Monitoringand Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China

Abstract

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of “medicine and pharmaceutical excipients all-in-one”. In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and −50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 μg/mL, 2975 μg/mL, and 5950 μg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.

Funder

Science and Technology Program of Guizhou Province

Guizhou Provincial Department of Education Higher Education Science Research Project

Guizhou Provincial Science and Technology Department platform talent project

Surplus Funds from Academic Talent Project of Guizhou Provincial Department of Science and Technology

Guizhou Province’s 14th Five-Year Plan Key disciplines of Traditional Chinese Medicine and Ethnic Medicine

Natural Science Research Project of Guizhou Department of Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3