In Situ Self-Growth of a ZnO Nanorod Array on Nonwoven Fabrics for Empowering Superhydrophobic and Antibacterial Features

Author:

Yuan Xiaoqi1,Liu Binghui1,Yang Aili1,Zhang Peng2,Li Wenjie1,Su Yueyu1

Affiliation:

1. School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China

2. Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

ZnO nanorod nonwoven fabrics (ZNRN) were developed through hydrothermal synthesis to facilitate the prevention of the transmission of respiratory pathogens. The superhydrophobicity and antibacterial properties of ZNRN were improved through the response surface methodology. The synthesized material exhibited significant water repellency, indicated by a water contact angle of 163.9°, and thus demonstrated antibacterial rates of 91.8% for Escherichia coli (E. coli) and 79.75% for Staphylococcus aureus (S. aureus). This indicated that E. coli with thinner peptidoglycan may be more easily killed than S. aureus. This study identified significant effects of synthesis conditions on the antibacterial effectiveness, with comprehensive multivariate analyses elucidating the underlying correlations. In addition, the ZnO nanorod structure of ZNRN was characterized through SEM and XRD analyses. It endows the properties of superhydrophobicity (thus preventing bacteria from adhering to the ZNRN surface) and antibacterial capacity (thus damaging cells through the puncturing of these nanorods). Consequently, the alignment of two such features is desired to help support the development of personal protective equipment, which assists in avoiding the spread of respiratory infections.

Funder

阳艾利

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3