Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction

Author:

Biehler Erik1,Quach Qui1ORCID,Abdel-Fattah Tarek M.1ORCID

Affiliation:

1. Applied Research Center at Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry at Christopher Newport University, Newport News, VA 23606, USA

Abstract

Increased environmental pollution and the shortage of the current fossil fuel energy supply has increased the demand for eco-friendly energy sources. Hydrogen energy has become a potential solution due to its availability and green combustion byproduct. Hydrogen feedstock materials like sodium borohydride (NaBH4) are promising sources of hydrogen; however, the rate at which the hydrogen is released during its reaction with water is slow and requires a stable catalyst. In this study, gold nanoparticles were deposited onto mesoporous carbon to form a nano-composite catalyst (AuNP-MCM), which was then characterized via transmission electron microscopy (TEM), powder X-ray diffraction (P-XRD), and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). The composite’s catalytic ability in a hydrogen evolution reaction was tested under varying conditions, including NaBH4 concentration, pH, and temperature, and it showed an activation of energy of 30.0 kJ mol−1. It was determined that the optimal reaction conditions include high NaBH4 concentrations, lower pH, and higher temperatures. This catalyst, with its stability and competitively low activation energy, makes it a promising material for hydrogen generation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3