Abstract
Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted much attention because of its abundant nutritional components and pharmaceutical value. Its seeds undergo a complex series of physiological and biochemical changes during maturation, with consequent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids, were found in all three comparison groups, with consistently down-regulated trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5′-methylthioadenosine were the differentially expressed metabolites when seeds were in the growth periods of S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4 were differentially expressed. It was indicated that flavonoids dynamically change during all the oil-tea camellia seed development stages. The findings provide data for the better understanding of endogenous metabolic pathways during C. vietnamensis seed development.
Funder
Key R&D Program of Hainan Province, China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献