UV-Denaturation Assay to Assess Protein Photostability and Ligand-Binding Interactions Using the High Photon Flux of Diamond B23 Beamline for SRCD

Author:

Hussain Rohanah,Longo Edoardo,Siligardi Giuliano

Abstract

Light irradiation with high photon flux in the vacuum and far-UV region is known to denature the conformation of biopolymers. Measures are in place at Diamond Light Source B23 beamline for Synchrotron Radiation Circular Dichroism (SRCD) to control and make this effect negligible. However, UV denaturation of proteins can also be exploited as a novel method for assessing biopolymer photostability as well as ligand-binding interactions. Usually, host–ligand binding interactions can be assessed monitoring CD changes of the host biopolymer upon ligand addition. The novel method of identifying ligand binding monitoring the change of relative rate of UV denaturation using SRCD is especially important when there are very little or insignificant secondary structure changes of the host protein upon ligand binding. The temperature study, another method used to determine molecular interactions, can often be inconclusive when the thermal effect associated with the displacement of the bound solvent molecules by the ligand is also small, making the determination of the binding interaction inconclusive. Herein we present a review on the UV-denaturation assay as a novel method to determine the relative photostability of protein formulations as well as the screening of ligand-binding interactions using the high photon flux Diamond B23 beamline for SRCD.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference39 articles.

1. Molecular Optical Activity and the Chiral Discrimination;Mason,1982

2. Circular Dichroism and the Conformational Analysis of Biomolecules;Fasman,1996

3. Circular Dichroism Principles and Applications;Berova,2000

4. Comprehensive Chiroptical Spectroscopy: Applications in Sterochemical Analysis of Synthetic Compounds, Natural Products and Biomolecules;Berova,2012

5. Biomolecules interactions and competitions by non-immobilised ligand interaction assay by circular dichroism;Siligardi;Enantiomer,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3