The Selective CO2 Adsorption and Photothermal Conversion Study of an Azo-Based Cobalt-MOF Material

Author:

Dang Li-Long,Zong De-Xi,Lu Xiao-YanORCID,Zhang Ting-Ting,Chen Tian,Sun Jiu-Long,Zhao Jiu-Zhou,Liu Meng-Yang,Liu Shui-Ren

Abstract

A new metal–organic framework (MOF), [Co2(L)2(azpy)]n (compound 1, H2L = 5-(pyridin-4-ylmethoxy)-isophthalic acid, azpy = 4,4′-azopyridine), was synthesized by a solvothermal method and further characterized by elemental analysis, IR spectra, thermogravimetric analysis, single-crystal and powder X-ray diffraction. The X-ray single-crystal diffraction analysis for compound 1 indicated that two cis L22− ligands connected to two cobalt atoms resulted in a macrocycle structure. Through a series of adsorption tests, we found that compound 1 exhibited a high capacity of CO2, and the adsorption capacity could reach 30.04 cm3/g. More interestingly, under 273 K conditions, the adsorption of CO2 was 41.33 cm3/g. In addition, when the Co-MOF was irradiated by a 730 nm laser, rapid temperature increases for compound 1 were observed (temperature variation in 169 s: 26.6 °C), showing an obvious photothermal conversion performance. The photothermal conversion efficiency reached 20.3%, which might be due to the fact that the parallel arrangement of azo units inhibited non-radiative transition and promoted photothermal conversion. The study provides an efficient strategy for designing MOFs for the adsorption of CO2 and with good photothermal conversion performance.

Funder

Natural Science Foundation of Henan Province

Key Scientific Research Projects of Higher Education of He’nan Province

Shanghai Science and Technology Committee

Heluo Young Talent Lifting Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3