Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation

Author:

Pulyalina AlexandraORCID,Rostovtseva Valeriia,Faykov Ilya,Tataurov Maksim,Dubovenko Roman,Shugurov Sergey

Abstract

Novel polymer composites based on polyamide–imide Torlon and deep eutectic solvent (DES) were fabricated and adapted for separation processes. DES composed of zinc chloride and acetamide in a ratio of 1:3 M was first chosen as a Torlon-modifier due to the possibility of creating composites with a uniform filling of the DES through the formation of hydrogen bonds. The structure of the membranes was investigated by scanning electron microscopy and X-ray diffraction analysis; thermal stability was determined by thermogravimetric analysis and mass spectrometry. The surface of the composites was studied by determining the contact angles and calculating the surface tension. The transport properties were investigated by such membrane methods as pervaporation and gas separation. It was found that the inclusion of DES in the polymer matrix leads to a significant change in the structure and surface character of composites. It was also shown that DES plays the role of a plasticizer and increases the separation performance in the separation of liquids and gases. Torlon/DES composites with a small amount of modifier were effective in alcohol dehydration, and were permeable predominantly to water impurities in isopropanol. Torlon/DES-5 demonstrates high selectivity in the gas separation of O2/N2 mixture.

Funder

Russian Science Foundation

Council on grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference50 articles.

1. Selective Membranes for Purification and Separation of Organic Liquid Mixtures;Uragami,2010

2. Next-generation pervaporation membranes: Recent trends, challenges and perspectives;Vandezande,2015

3. Recent membrane development for pervaporation processes

4. Polymeric membrane pervaporation

5. Hybrid Organic−Inorganic Membrane:  Solving the Tradeoff between Permeability and Selectivity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3