Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing

Author:

Al-Musawi SharafaldinORCID,Albukhaty SalimORCID,Al-Karagoly HassanORCID,Sulaiman Ghassan M.ORCID,Alwahibi Mona S.ORCID,Dewir Yaser HassanORCID,Soliman Dina A.ORCID,Rizwana Humaira

Abstract

This paper describes the preparation, characterization, and evaluation of honey/tripolyphosphate (TPP)/chitosan (HTCs) nanofibers loaded with capsaicin derived from the natural extract of hot pepper (Capsicum annuumL.) and loaded with gold nanoparticles (AuNPs) as biocompatible antimicrobial nanofibrous wound bandages in topical skin treatments. The capsaicin and AuNPs were packed within HTCs in HTCs-capsaicin, HTCs-AuNP, and HTCs-AuNPs/capsaicin nanofibrous mats. In vitro antibacterial testing against Pasteurella multocida, Klebsiella rhinoscleromatis,Staphylococcus pyogenes, and Vibrio vulnificus was conducted in comparison with difloxacin and chloramphenicol antibiotics. Cell viability and proliferation of the developed nanofibers were evaluated using an MTT assay. Finally, in vivo study of the wound-closure process was performed on New Zealand white rabbits. The results indicate that HTCs-capsaicin and HTCs-AuNPs are suitable in inhibiting bacterial growth compared with HTCs and HTCs-capsaicin/AuNP nanofibers and antibiotics (P < 0.01). The MTT assay demonstrates that the nanofibrous mats increased cell proliferation compared with the untreated control (P < 0.01). In vivo results show that the developed mats enhanced the wound-closure rate more effectively than the control samples. The novel nanofibrous wound dressings provide a relatively rapid and efficacious wound-healing ability, making the obtained nanofibers promising candidates for the development of improved bandage materials.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3