A Six-Year Hydration Evaluation of Cs-Bearing Materials at Room Temperature and 55% Relative Humidity Simulating Radioactive Waste with Different Crystallinities

Author:

Cerri Guido1ORCID,Brundu Antonio1ORCID

Affiliation:

1. Department of Architecture, Design and Urban Planning—GeoMaterials Lab, Sassari University, Via Piandanna 4, 07100 Sassari, Italy

Abstract

Radioactive wastes often contain amorphous and crystalline phases, and vapor hydration can affect their durability. In this study, Cs-clinoptilolite was heated (at 1100 °C and for 2–36 h) to prepare the samples that were composed mainly of an amorphous phase (AmP) and CsAlSi5O12 (≥94%) with minor CsAlSi2O6. Six samples with an AmP/CsAlSi5O12 ratio from 26.5 to 0.1 were kept at 21 °C and 55% relative humidity, and their hydration was measured via thermogravimetry (TG) over a period of almost six years. The hydration that resulted was directly related to the AmP quantity. The increase in water content followed a logarithmic trend over time. It reached 1.95% in the AmP-richest material, while it attained only 0.07% in the most crystalline sample. The hydrolysis of the AmP led to an increase over time in the tightly bound water. Samples with an AmP of ≤19% demonstrated slightly higher durability due to the lower Cs content in the AmP.

Funder

University of Sassari

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3