Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment

Author:

Biswas Rajib,Teller Philip J.,Khan Muhammad U.,Ahring Birgitte K.

Abstract

Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as temperature (170–190 °C), oxygen dosage (0.5–7.5% of dry matter (DM), w/w), residence time (10–30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes (Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1% and 83.1%, respectively, could be achieved with a pretreatment at 177 °C with 7.5% O2 and a retention time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating at 190 °C; however, the hemicellulose yield would be significantly reduced. It was evident that more severe conditions were required for maximal cellulose digestibility than that of hemicellulose digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in the maximum sugar yield.

Funder

USDA

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference46 articles.

1. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass

2. Forest bioresources for bioethanol and biodiesel production with emphasis on mohua (Madhuca latifolia L.) flowers and seeds;Behera,2019

3. Poplar as a feedstock for biofuels: A review of compositional characteristics

4. Hybrid poplar in the Pacific Northwest: The effects of market-driven management;Stanton;J. For. Res.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3