Dynamic Industrial Optimization: A Framework Integrates Online Machine Learning for Processing Parameters Design

Author:

Yao Yu1,Qian Quan123ORCID

Affiliation:

1. School of Computer Engineering & Science, Shanghai University, Shanghai 200444, China

2. Research Center of Urban Information, Center of Materials Informatics and Data Science, Shanghai University, Shanghai 200444, China

3. Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China

Abstract

We develop the online process parameter design (OPPD) framework for efficiently handling streaming data collected from industrial automation equipment. This framework integrates online machine learning, concept drift detection and Bayesian optimization techniques. Initially, concept drift detection mitigates the impact of anomalous data on model updates. Data without concept drift are used for online model training and updating, enabling accurate predictions for the next processing cycle. Bayesian optimization is then employed for inverse optimization and process parameter design. Within OPPD, we introduce the online accelerated support vector regression (OASVR) algorithm for enhanced computational efficiency and model accuracy. OASVR simplifies support vector regression, boosting both speed and durability. Furthermore, we incorporate a dynamic window mechanism to regulate the training data volume for adapting to real-time demands posed by diverse online scenarios. Concept drift detection uses the EI-kMeans algorithm, and the Bayesian inverse design employs an upper confidence bound approach with an adaptive learning rate. Applied to single-crystal fabrication, the OPPD framework outperforms other models, with an RMSE of 0.12, meeting precision demands in production.

Funder

National Key Research and Development Program of China

Key Program of Science and Technology of Yunnan Province

Key Project of Shanghai Zhangjiang National Independent Innovation Demonstration Zone

Publisher

MDPI AG

Reference34 articles.

1. Industry 4.0, digitization, and opportunities for sustainability;Ghobakhloo;J. Clean. Prod.,2020

2. Machine learning in manufacturing and industry 4.0 applications;Rai;Int. J. Prod. Res.,2021

3. Machine learning: Trends, perspectives, and prospects;Jordan;Science,2015

4. Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D., Pérez-Sánchez, B., and Peteiro-Barral, D. (2013). Efficiency and Scalability Methods for Computational Intellect, IGI Global.

5. Ikonomovska, E., Loshkovska, S., and Gjorgjevikj, D. (2024, March 07). A survey of Stream Data Mining. Available online: https://repository.ukim.mk/handle/20.500.12188/23843.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3