Deterministic K-Identification for Future Communication Networks: The Binary Symmetric Channel Results

Author:

Salariseddigh Mohammad Javad12ORCID,Dabbabi Ons1,Deppe Christian23ORCID,Boche Holger24ORCID

Affiliation:

1. Institute for Communications Engineering, Technical University of Munich (TUM), 80333 Munich, Germany

2. Federal Ministry of Education and Research, Hub 6G-Life, Technical University of Munich (TUM), 80333 Munich, Germany

3. Institute for Communications Technology, Technical University of Braunschweig, 38106 Braunschweig, Germany

4. Chair of Theoretical Information Technology, Technical University of Munich, 80333 Munich, Germany

Abstract

Numerous applications of the Internet of Things (IoT) feature an event recognition behavior where the established Shannon capacity is not authorized to be the central performance measure. Instead, the identification capacity for such systems is considered to be an alternative metric, and has been developed in the literature. In this paper, we develop deterministic K-identification (DKI) for the binary symmetric channel (BSC) with and without a Hamming weight constraint imposed on the codewords. This channel may be of use for IoT in the context of smart system technologies, where sophisticated communication models can be reduced to a BSC for the aim of studying basic information theoretical properties. We derive inner and outer bounds on the DKI capacity of the BSC when the size of the goal message set K may grow in the codeword length n. As a major observation, we find that, for deterministic encoding, assuming that K grows exponentially in n, i.e., K=2nκ, where κ is the identification goal rate, then the number of messages that can be accurately identified grows exponentially in n, i.e., 2nR, where R is the DKI coding rate. Furthermore, the established inner and outer bound regions reflects impact of the input constraint (Hamming weight) and the channel statistics, i.e., the cross-over probability.

Funder

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3