Abstract
Atherosclerosis is an inflammatory disease mediated by interferon (IFN-γ) in concert with cell adhesion molecules and chemokines. Thymoquinone (TQ), a flavonoid derived from Nigella sativa, is reported to have anti-inflammatory, antioxidant, and cardiovascular protective properties. We evaluated the effects of TQ on the key pathogenic stages of atherosclerosis, including cell viability, inflammatory gene expression, cell migration, and cholesterol efflux, on human THP-1 macrophages in-vitro. Moreover, in-silico analysis was performed to predict the molecular targets and signaling mechanisms. We demonstrated that TQ treatment had no effect on cell viability and decreased the expression of monocyte chemoattractant protein (MCP-1) and intercellular adhesion molecule (ICAM-1) in response to IFN-γ. In addition, we have also demonstrated that the THP-1 cell migration was inhibited by TQ in the absence or presence of MCP-1. Thymoquinone had no effect on cholesterol efflux from monocytes. In-silico analysis also identified several putative targets for TQ that are associated with inflammatory diseases and associated signaling pathways. Collectively, these results suggest that TQ has anti-inflammatory effects and may be a potential nutraceutical candidate for the prevention and treatment of atherosclerosis.
Subject
Microbiology (medical),Molecular Biology,General Medicine,Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献